Faculty of Fundamental Problems of Technology

COURSE CARD

Name in polish : Bezpieczeństwo Systemów II

Name in english : **System Security II**Field of study : Computer Science

Specialty (if applicable)

Undergraduate degree and form of : masters, stationary

Type of course : compulsory
Course code : E2_BI05
Group rate : Yes

	Lectures	Exercides	Laboratory	Project	Seminar
Number of classes held in schools (ZZU)	30	15	15		
The total number of hours of student work-	60	30	30		
load (CNPS)					
Assesment	exam				
For a group of courses final course mark	X				
Number of ECTS credits	2	1	1		
including the number of points correspond-		1	1		
ing to the classes of practical (P)					
including the number of points correspond-	2	1	1		
ing occupations requiring direct contact					
(BK)					

PREREQUISITES FOR KNOWLEDGE, SKILLS AND OTHER POWERS

Passed 'Security I' course.

COURSE OBJECTIVES

- **C1** Introduction to the formal analysis of security of information systems. Discussion of security models, types of attacks, adversaries and scenarios. Presentation of theorem proving techniques in the field of security.
- **C2** Provide the skills to: a) analyze the correctness of security protocols, b) prove security properties of selected systems for different models of adversaries.
- C3 Design and prototype selected cryptosystems.

COURSE LEARNING OUTCOMES

The scope of the student's knowledge:

- W1 Knows mathematical models of access control and risk analysis
- W2 Knows adversary models and attack scenarios
- W3 Knows techniques for security proofs

The student skills:

- U1 Specify security requirements for given systems in chosen models
- U2 Analyse and evaluate security of given systems in chosen models
- U3 Synthesize new systems from secure building blocks

The student's social competence:

- **K1** Describe and analyse computer security problems in chosen theoretical models.
- **K2** Understand and can argue for the need of theoretical analysis of computer security.

COURSE CONTENT

Type of classes - lectures		
Wy1	Introduction to formal models of computer system security.	
Wy2 Formal models of access control.		1h
Wy3	Risk analysis	1h
Wy4	Models of theoretical limitations of system security.	1h
Wy5	Adversary models and attack scenarios.	2h
Wy6	Security based on a standard model, and a random oracle.	4h
Wy7	Formal models of cryptosystems and protocols security.	5h
Wy8	Proving security via reduction techniques.	5h
Wy9	Wy9 Sequence of games with the adversary.	
Wy10	The framework of Universal Composability.	5h
Type of classes - exercises		
Ćw1	Aaccess control and risk analysis	2h
Ćw2	Proving security via reduction techniques.	
Ćw3	Proving security via sequence of games.	
Ćw4	Proving security in the UC Framework	
Type of classes - laboratory		
Lab1	Implementing a prototype of a chosen security protocol.	15h

Applied learning tools

- 1. Traditional lecture
- 2. Solving tasks and problems
- 3. Creating programming projects
- 4. Self-study students

EVALUATION OF THE EFFECTS OF EDUCATION ACHIEVEMENTS					
Value	Number of training effect	fect Way to evaluate the effect of educa-			
		tion			
F1	W1-W3, K1-K2				
F2	U1-U3, K1-K2				
F3	U1-U3, K1-K2				
P=%*F1+%*F2+%*F3					

BASIC AND ADDITIONAL READING

- 1. Random Oracles are Practical: A Paradigm for Designing Efficient Protocols, Mihir Bellare and Phillip Rogaway
- 2. The Random Oracle Methodology Revisited, Ran Canetti, Oded Goldreich and Shai Halevi.
- 3. Abstract models of computation in cryptography, Ueli Maurer.
- 4. Universally Composable Security: A New Paradigm for Cryptographic Protocols, R. Canetti.

SUPERVISOR OF COURSE dr Łukasz Krzywiecki

RELATIONSHIP MATRIX EFFECTS OF EDUCATION FOR THE COURSE

System Security II
WITH EFFECTS OF EDUCATION ON THE DIRECTION OF COMPUTER SCIENCE

Course train-	Reference to the effect of the learning out-	Objectives of		Number of
ing effect	comes defined for the field of study and	the course**	tents of the	teaching
	specialization (if applicable)		course**	tools**
W1	K2_W01 K2_W02 K2_W04	C1	Wy1-Wy10	1 4
	K2_W12_S2BKM			
W2	K2_W01 K2_W02 K2_W04	C1	Wy1-Wy10	1 4
	K2_W12_S2BKM			
W3	K2_W01 K2_W02 K2_W04	C1	Wy1-Wy10	1 4
	K2_W12_S2BKM			
U1	K2_U01 K2_U02 K2_U09 K2_U12	C2 C3	Ćw1-Ćw4	2 3 4
	K2_U13 K2_U14 K2_U23_S2BKM		Lab1-Lab1	
	K2_U24_S2BKM			
U2	K2_U01 K2_U02 K2_U04 K2_U08	C2 C3	Ćw1-Ćw4	2 3 4
	K2_U09 K2_U10 K2_U11		Lab1-Lab1	
	K2_U12 K2_U13 K2_U14 K2_U15			
	K2_U23_S2BKM K2_U24_S2BKM			
U3	K2_U01 K2_U02 K2_U04 K2_U09	C2 C3	Ćw1-Ćw4	2 3 4
	K2_U10 K2_U11 K2_U13 K2_U14		Lab1-Lab1	
	K2_U23_S2BKM K2_U24_S2BKM			
K1	K2_K01 K2_K04 K2_K14 K2_K15	C1 C2 C3	Wy1-Wy10	1 2 3 4
	K2_K16 K2_K18		Ćw1-Ćw4	
			Lab1-Lab1	
K2	K2_K01 K2_K04 K2_K13 K2_K14	C1 C2 C3	Wy1-Wy10	1 2 3 4
	K2_K15 K2_K16 K2_K18		Ćw1-Ćw4	
			Lab1-Lab1	