Faculty of Fundamental Problems of Technology

COURSE CARD

Name in polish

Name in english

Field of study

: Kryptografia

Cryptography

Computer Science

Specialty (if applicable)

Undergraduate degree and form of : masters, stationary

Type of course : compulsory
Course code : E2_I03
Group rate : Yes

	Lectures	Exercides	Laboratory	Project	Seminar
Number of classes held in schools (ZZU)	30	30	30		
The total number of hours of student wor-	45	45	60		
kload (CNPS)					
Assesment	exam				
For a group of courses final course mark	X				
Number of ECTS credits	1	2	2		
including the number of points correspon-		2	2		
ding to the classes of practical (P)					
including the number of points correspon-	1	2	2		
ding occupations requiring direct contact					
(BK)					

PREREQUISITES FOR KNOWLEDGE, SKILLS AND OTHER POWERS

Standard knowledge of the field: abstract algebra, algorithms and data structures, probability, computational complexity.

COURSE OBJECTIVES

- C1 presentation of advanced cryptographic techniques used in practice
- C2 understanding advanced mechanisms of modern cryptography
- C3 getting skills in implementing cryptographic techniques

COURSE LEARNING OUTCOMES

The scope of the student's knowledge:

- W1 knows most important techniques of modern cryptography
- W2 knows tools and mathematical structures used to construct cryptographic schemes
- W3 knows the most important problems and challenges of modern cryptography and cryptoanalysis

The student skills:

- U1 is able to build cryptographic tools to ensure security
- U2 is able to build and use cryptographic tools
- U3 is able to use abstract mathematical structures used to implement cryptographic schemes
- U4 is able to evaluate and select apropriate cryptographic schemes according to a set of given requirements

The student's social competence:

- K1 understands need of use of cryptographic techniques
- K2 is able to apply cryptographic techniques to the end-user needs and behaviours
- **K3** is able to adjust a cryptographic solution to the law and economical requirements
- **K4** is able to estimate and predict possible treads and attack surfaces

COURSE CONTENT

Type of classes - lectures				
Wy1	Cryptography - history and overview	2h		
Wy2	One time pad. Stream ciphers	2h		
Wy3	Block ciphers	2h		
Wy4	PRPs and PRFs as block cipher abstractions	2h		
Wy5	Message integrity. Collision resistant hash functions.	3h		
Wy6	Security against active attacks - authenticate encryption	2h		
Wy7	Discrete-log assumptions	2h		
Wy8	Cryptography using arithmetic modulo composites	2h		
Wy9	Security of cryptosystems based on factoring and discrete logarithm problem.	2h		
Wy10	Digital signatures	2h		
Wy11	Public-Key Cryptosystems in the Random Oracle Model	2h		
Wy12	Zero knowledge proofs	2h		
Wy13	Secure Multi Party Computation	2h		
Wy14	Quantum cryptography	3h		

Type of classes - exercises			
Ćw1	Ciphertext-only attacks	2h	
Ćw2	Perfect secrecy	2h	
Ćw3	Attacks on block ciphers	2h	
Ćw4	Modes of operation	2h	
Ćw5	Hash functions, message authentication codes	2h	
Ćw6	CPA i CCA2	2h	
Ćw7	Key agreement. ElGamal	2h	
Ćw8	RSA	2h	
Ćw9	Discrete logarithm, factoring	2h	
Ćw10	Digital signatures	2h	
Ćw11	Random Oracle Model	2h	
Ćw12	Interactive proofs	2h	
Ćw13	Oblivious transfer	2h	
Ćw14	Quantum cryptography	2h	
Type of classes - laboratory			
Lab1	How to implement a cryptographic provider	2h	
Lab2	Securing data	4h	
Lab3	Hash functions	4h	
Lab4	Primality testing	4h	
Lab5	Discrete logarithm	4h	
Lab6	Factoring	4h	
Lab7	Implementation of a chosen digital signature scheme	6h	

Applied learning tools

- 1. Traditional lecture
- 2. Solving tasks and problems
- 3. Solving programming tasks
- 4. Consultation
- 5. Self-study students

EVALUATION OF THE EFFECTS OF EDUCATION ACHIEVEMENTS

Value	Number of training effect	Way to evaluate the effect of educa-
		tion
F1	W1-W3, K1-K4	
F2	U1-U4, K1-K4	
F3	U1-U4, K1-K4	
P=%*F1+%*F2+%*F3		

BASIC AND ADDITIONAL READING

- 1. Introduction to modern cryptography. Jonathan Katz, Yehuda Lindell
- 2. Handbook of Applied Cryptography. Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone, ISBN:0-8493-8523-7

	SUPERVISOR OF COURSE	
dr Filip Zagórski		

RELATIONSHIP MATRIX EFFECTS OF EDUCATION FOR THE COURSE

Cryptography
WITH EFFECTS OF EDUCATION ON THE DIRECTION OF COMPUTER SCIENCE

Course tra-	Reference to the effect of the learning out-	Objectives of	The con-	Number of
ining effect	comes defined for the field of study and	the course**	tents of the	teaching
	specialization (if applicable)		course**	tools**
W1	K2_W01 K2_W02 K2_W03_B	C1	Wy1-Wy14	1 4 5
	K2_W04_B			
W2	K2_W01 K2_W02 K2_W03_B	C1	Wy1-Wy14	1 4 5
	K2_W04_B K2_W05			
W3	K2_W01 K2_W02 K2_W03_B	C1	Wy1-Wy14	1 4 5
	K2_W04_B K2_W05			
U1	K2_U01_B K2_U16 K2_U19_B	C2 C3	Ćw1-Ćw14	2 3 4 5
	K2_U21_B		Lab1-Lab7	
U2	K2_U01_B K2_U08_B K2_U12_B	C2 C3	Ćw1-Ćw14	2 3 4 5
	K2_U14 K2_U18_B K2_U19_B		Lab1-Lab7	
	K2_U21_B K2_U22_B			
U3	K2_U01_B K2_U09_B K2_U12_B	C2 C3	Ćw1-Ćw14	2 3 4 5
			Lab1-Lab7	
U4	K2_U01_B K2_U05_B K2_U08_B	C2 C3	Ćw1-Ćw14	2 3 4 5
	K2_U09_A K2_U10 K2_U12_B		Lab1-Lab7	
	K2_U13 K2_U14 K2_U15 K2_U16			
	K2_U17 K2_U18_B K2_U19_B			
	K2_U20 K2_U21_B			
K1	K2_K01_B K2_K02 K2_K03 K2_K04	C1 C2 C3	Wy1-Wy14	1 2 3 4 5
	K2_K11 K2_K12 K2_K13 K2_K14_B		Ćw1-Ćw14	
1/2	K2_K15 K2_K16	G1 G2 G2	Lab1-Lab7	1 2 2 4 7
K2	K2_K01_B K2_K02 K2_K03 K2_K04	C1 C2 C3	Wy1-Wy14	1 2 3 4 5
	K2_K05 K2_K10 K2_K13 K2_K14_B		Ćw1-Ćw14	
1/2	K2_K15 K2_K16	C1 C2 C2	Lab1-Lab7	1 2 2 4 5
K3	K2_K04	C1 C2 C3	Wy1-Wy14	1 2 3 4 5
			Ćw1-Ćw14	
TZ 4	WO WOLD WO WOO WO WO WO	C1 C2 C2	Lab1-Lab7	1 2 2 4 5
K4	K2_K01_B K2_K03 K2_K04 K2_K05	C1 C2 C3	Wy1-Wy14	1 2 3 4 5
	K2_K10 K2_K12 K2_K13 K2_K14_B		Ćw1-Ćw14	
	K2_K15 K2_K16		Lab1-Lab7	