Faculty of Fundamental Problems of Technology						
COURSE CARD						
Name in polish :	Wysoko Wydajne Obliczenia					
Name in english :	High Performance Computing					
Field of study : C	Computer Science					
Specialty (if applicable) :						
Undergraduate degree and form of : r	and form of : masters, stationary					
Type of course : c	optional					
Course code : H						
Group rate : Y	les					
	Lectures	Exercides	Laboratory	Project	Seminar	
Number of classes held in schools (ZZU)	30		30			
The total number of hours of student wor-	75		105			
kload (CNPS)						
Assesment	pass					
For a group of courses final course mark	X					
Number of ECTS credits	3		3			
including the number of points correspon-			3			
ding to the classes of practical (P)						
including the number of points correspon-	3		3			
ding occupations requiring direct contact						
(BK)						
PREREOUISITES FOR KNOWLEDGE. SKILLS AND OTHER POWERS						
ability to program in linux / unix operating system, knowledge of C and C++ programming language						
COURSE OBJECTIVES						
C1 Providing basic methods for parallelization of computations in some cryptanalytic applications.						

C2 Providing knowledge of exemplary tools for parallelization of cryptanalytic computations.

COURSE LEARNING OUTCOMES

The scope of the student's knowledge:

- W1 Knows the main limitations of the cryptanalytic methods presented.
- W2 Knows the parallelization methods specific to cluster computing.
- W3 Knows the art software development suitable for parallel environment.

The student skills:

- **U1** Is able to adjust parameters of the attack in such a way that the computational effort is (nearly) optimal for available resources.
- **U2** Is able to see ways of improving effectiveness of her/his own implementation (in case of a change of system parameters).
- U3 Relying on appropriate sources the student can justify the relevance of the solutions implemented.

The student's social competence:

- **K1** Understands the need for an additional security margin in the selection of parameters of a cryptographic algorithm.
- **K2** Sees the possibility of using the acquired skills in other areas.

COURSE CONTENT

Type of classes - lectures			
Wy1	Distributed computing system - possible architectures.	1h	
Wy2	A computer cluster - administrative tools and programming libraries.	2h	
Wy3	Index calculus method for computing discrete logarithms in a multiplicative group of a finite	2h	
	field.		
Wy4	Pollard rho-method.	2h	
Wy5	Parallelization of the Pollard rho-method.	3h	
Wy6	Application of the Pollard rho-method in the Pohlig-Hellman algorithm.	3h	
Wy7	Kangaroo method for computing a discrete logarithm that belongs to some known interval.	2h	
Wy8	Parallelization of the kangaroo method.	2h	
Wy9	Lenstra's elliptic curve factorization algorithm.	2h	
Wy10	Rainbow tables.	2h	
Wy11	Quadratic sieve and the number field sieve.	5h	
Wy12	Dedicated hardware designed for factorization.	4h	
Type of classes - laboratory			
Lab1	Programming environment for a computer cluster.	2h	
Lab2	MPI and NTL libraries in basic parallelization tasks.	2h	
Lab3	Implementation of a parallel version of the index calculus method.	6h	
Lab4	Implementation of a parallel version of the Pollard rho method.	4h	
Lab5	Implementation of a parallel version of the Pohlig-Hellman algorithm with the Pollard rho	6h	
	method as a component.		
Lab6	Implementation of Lenstra's elliptic curve factorization algorithm.	4h	
Lab7	Implementation of an attack based on rainbow tables.	4h	
Lab8	Summary of the laboratory classes.	2h	

Applied learning tools

- 1. Traditional lecture
- 2. Solving tasks and problems
- 3. Solving programming tasks
- 4. Consultation
- 5. Self-study students

EVALUATION OF THE EFFECTS OF EDUCATION ACHIEVEMENTS

Value	Number of training effect	Way to evaluate the effect of educa-		
		tion		
F1	W1-W3, K1-K2	an exam at the end of the semester		
F2	U1-U3, K1-K2	Evaluation of implementation of al-		
		gorithms specified during the clas-		
		ses.		

P=40%*F1+60%*F2

BASIC AND ADDITIONAL READING

- 1. William Gropp, Ewing Lusk, Rajeev Thakur, Using MPI-2: Advanced Features of the Message-Passing Interface, MIT Press, 1999
- Paul C. van Oorschot, Michael J. Wiener: Parallel Collision Search with Cryptanalytic Applications. J. Cryptology 12(1): 1-28 (1999)
- 3. Tim Güneysu, Andy Rupp, Stefan Spitz, Cryptanalytic Time-Memory Tradeoffs on COPACOBANA, GI Jahrestagung 2, Vol. 110GI (2007), p. 205-209
- 4. Matthew E. Briggs, An Introduction to the General Number Field Sieve, Masterthesis, 1998

SUPERVISOR OF COURSE

dr Przemysław Kubiak

RELATIONSHIP MATRIX EFFECTS OF EDUCATION FOR THE COURSE High Performance Computing WITH EFFECTS OF EDUCATION ON THE DIRECTION OF COMPUTER SCIENCE

Course tra-	Reference to the effect of the learning out-	Objectives of	The con-	Number of
ining effect	comes defined for the field of study and	the course**	tents of the	teaching
	specialization (if applicable)		course**	tools**
W1	K2_W02	C1	Wy1-Wy12	145
W2	K2_W01	C1	Wy1-Wy12	145
W3	K2_W09	C1	Wy1-Wy12	145
U1	K2_U08_B K2_U10 K2_U14	C1	Lab1-Lab8	2345
U2	K2_U18_B K2_U19_B K2_U21_B	C1	Lab1-Lab8	2345
U3	K2_U01_B K2_U07 K2_U16	C1	Lab1-Lab8	2345
K1	K2_K12	C1 C2	Wy1-Wy12	12345
			Lab1-Lab8	
K2	K2_K01_B K2_K12 K2_K13	C1 C2	Wy1-Wy12	1 2 3 4 5
			Lab1-Lab8	