Faculty of Fundamental Problems of Technology						
COURSE CARD						
1	U	nie Deklaratyv	vne			
	: Declarative Programming					
	Computer Scie	ence				
Specialty (if applicable) :						
	ndergraduate degree and form of : masters, stationary					
	optional					
	E2_W11					
Group rate :	Yes					
	Lectures	Exercides	Laboratory	Project	Seminar	
Number of classes held in schools (ZZU)	30	30				
The total number of hours of student wor-	90	90				
kload (CNPS)						
Assesment	pass					
For a group of courses final course mark	X					
Number of ECTS credits	3	3				
including the number of points correspon-		3				
ding to the classes of practical (P)						
including the number of points correspon-		3				
ding occupations requiring direct contact						
(BK)						
PREREQUISITES FOR	KNOWLEDO	GE, SKILLS A	ND OTHER P	OWERS		
The prerequisites are not defined for this n	nodule.					
	COURSE O	BJECTIVES				
C1 Cotting to know the theoretical found	tions of logic	programming				
C1 Getting to know the theoretical foundation	ations of logic	programming				
C2 Learning to use the methods of autom	atic theorem p	roving				
C C	1	0				
COL	RSE LEARN	ING OUTCON	AES			
The scope of the student's knowledge:						
W1 Student knows the issue of unification	n termów					
W2 Student knows the issues related to the	e interpretatio	n of first-order	logic formulas	5		
W3 Student knows the automated theorem	n proving metl	hods based on	the principle of	resolution		
The student skills:						
U1 Student is able to apply the resolution	to automatic t	heorem provin	g			
U2 Student is able to apply the control strategies used to increase the efficiency of inference						
U3 Student is able to use Prolog as a practical programming system based on the resolution						
The student's social competence:						
K1 Student is able to indicate the applications of automated theorem proving in various fields						
EXE Student is able to indicate the applications of automated theorem proving in various netus						

	COURSE CONTENT	
	Type of classes - lectures	
Wy1	Terms and cyclic terms	2h
Wy2	Matching and unification	2h
Wy3	Semiunification	2h
Wy4	Interpretations of formulas in first order logic	2h
Wy5	Normal forms and Skolem standard forms	2h
Wy6	Herbrand procedure	2h
Wy7	The resolution principle	2h
Wy8	Semantic resolution	2h
Wy9	Lock resolution	2h
Wy10	Linear resolution	2h
Wy11	Control strategies	2h
Wy12	The equality relation	2h
Wy13	SLD(NF)-resolution	2h
Wy14	The least Herbrand model	2h
Wy15	Conclusions	2h
	Type of classes - exercises	
Ćw1	Terms	2h
Ćw2	Unification	4h
Ćw3	Interpretation	4h
Ćw4	Skolem normal form and Herbrand procedure	4h
Ćw5	Resolution	4h
Ćw6	Linear rezolution	4h
Ćw7	Control strategies	4h
Ćw8	SLD(NF)-resolution and its semantics	4h
	Applied learning tools	I

Applied learning tools

1. Traditional lecture

- 2. Multimedia lecture
- 3. Solving tasks and problems
- 4. Consultation
- 5. Self-study students

EVALUATION OF THE EFFECTS OF EDUCATION ACHIEVEMENTS

Value	Number of training effect	Way to evaluate the effect of educa-
		tion
F1	W1-W3, K1-K1	Test
F2	U1-U3, K1-K1	Realization of exercises
P=60%*F1+40%*F2		

BASIC AND ADDITIONAL READING

1. C.L. Chang, R.C.T. Lee. Symbolic Logic and Mechanical Theorem Proving. Academic Press, Inc., 1973.

2. J.W. Lloyd. Foundations of logic programming. Springer-Verlag New York, 1987.

3. M. Wójcik. Zasada rezolucji. Metoda automatycznego wnioskowania. PWN, 1991.

SUPERVISOR OF COURSE

dr Przemysław Kobylański

RELATIONSHIP MATRIX EFFECTS OF EDUCATION FOR THE COURSE Declarative Programming WITH EFFECTS OF EDUCATION ON THE DIRECTION OF COMPUTER SCIENCE

Course tra-	Reference to the effect of the learning out-	Objectives of	The con-	Number of
ining effect	comes defined for the field of study and	the course**	tents of the	teaching
	specialization (if applicable)		course**	tools**
W1	K2_W02	C1	Wy1-Wy15	1245
W2	K2_W02	C1	Wy1-Wy15	1245
W3	K2_W02	C1	Wy1-Wy15	1245
U1	K2_U12_A	C2	Ćw1-Ćw8	3 4 5
U2	K2_U12_A	C2	Ćw1-Ćw8	3 4 5
U3	K2_U12_A	C2	Ćw1-Ćw8	3 4 5
K1	K2_K14_A	C1 C2	Wy1-Wy15	1 2 3 4 5
			Ćw1-Ćw8	