Faculty of Fundamental Problems of Technology

COURSE CARD

Name in polish: Krzywe eliptyczneName in english: Elliptic curvesField of study: Computer Science

Specialty (if applicable)

Undergraduate degree and form of : masters, stationary

Type of course: optionalCourse code: $E2_W34$ Group rate: Yes

	Lectures	Exercides	Laboratory	Project	Seminar
Number of classes held in schools (ZZU)	30	30			
The total number of hours of student wor-	90	90			
kload (CNPS)					
Assesment	pass				
For a group of courses final course mark	X				
Number of ECTS credits	3	3			
including the number of points correspon-		3			
ding to the classes of practical (P)					
including the number of points correspon-	2	2			
ding occupations requiring direct contact					
(BK)					

PREREQUISITES FOR KNOWLEDGE, SKILLS AND OTHER POWERS

COURSE OBJECTIVES

- C1 Review of algebraic structures used in cryptography and selected protocols based on them.
- C2 Deepen the knowledge gained during the lecture.

COURSE LEARNING OUTCOMES

The scope of the student's knowledge:

- W1 Knows the notions: group, ring, field.
- W2 Know the constructions of elliptic, hyperelliptic curves, and notions of ideal class group
- W3 Knows some protocols based on elliptic and hyperelliptic curve and uderstands advantages of such solutions.

The student skills:

- U1 Can check choosen properties discussed sructures.
- U2 Can implement discussed algorithms.

The student's social competence:

K1 Understands a role of algebra in informatics, especially in cryptography.

COURSE CONTENT

Type of classes - lectures		
Wy1	Group Theory.	2h
Wy2	Rings and moduls.	4h
Wy3	Fields.	4h
Wy4	Projective space.	2h
Wy5	Projective geometry	2h
Wy6	Algebraic sets and groups.	2h
Wy7	Elliptic group	4h
Wy8	Elliptic Group over finite field.	2h
Wy9	Elliptic-curve cryptography	4h
Wy10	Hyperelliptic group.	2h
Wy11	Ideal class group.	2h
Type of classes - exercises		
Ćw1	Group Theory.	2h
Ćw2	Rings and Modules.	4h
Ćw3	Fields.	4h
Ćw4	Projective space.	2h
Ćw5	Projective Geometry.	2h
Ćw6	Algebraic groups.	2h
Ćw7	Elliptic Curve.	2h
Ćw8	Elliptic curve over finite Fields.	2h
Ćw9	Elliptic curve cryptosystems.	4h
Ćw10	Hyperelliptic Curve.	2h
Ćw11	Ideal class group.	2h

Applied learning tools

- 1. Traditional lecture
- 2. Solving tasks and problems
- 3. Consultation
- 4. Self-study students

EVALUATION OF THE EFFECTS OF EDUCATION ACHIEVEMENTS

Value	Number of training effect	Way to evaluate the effect of educa-		
		tion		
F1	W1-W3, K1-K1			
F2	U1-U2, K1-K1			
P-%*F1+%*F2				

BASIC AND ADDITIONAL READING

- 1. N. Koblitz, Algebraic Aspects of Cryptography.
- 2. S. Lang, Algebra.

SUPERVISOR OF COURSE

dr Krzysztof Majcher

RELATIONSHIP MATRIX EFFECTS OF EDUCATION FOR THE COURSE

Elliptic curves WITH EFFECTS OF EDUCATION ON THE DIRECTION OF COMPUTER SCIENCE

Course tra-	Reference to the effect of the learning out-	Objectives of	The con-	Number of
ining effect	comes defined for the field of study and	the course**	tents of the	teaching
	specialization (if applicable)		course**	tools**
W1	K2_W02 K2_W03 K2_W04	C1	Wy1-Wy11	1 3 4
W2	K2_W02 K2_W03	C1	Wy1-Wy11	1 3 4
W3	K2_W02 K2_W03	C1	Wy1-Wy11	1 3 4
U1	K2_U03 K2_U06	C2	Ćw1-Ćw11	2 3 4
U2	K2_U03 K2_U06	C2	Ćw1-Ćw11	2 3 4
K1	K2_K02 K2_K03	C1 C2	Wy1-Wy11	1 2 3 4
			Ćw1-Ćw11	