Faculty of Information and Communication Technology/Department of Fundamentals of Computer Science

COURSE CARD

Name of the course in polish : Systemy Wbudowane w Bezpieczeństwie Komputerowym

Name of the course in english : **Embedded Security Systems**Field of study : Algoritmic Computer Science

Specialty (if applicable)

Level and form of studies : II degree, stationary

Type of course : compulsory

Course code : W04INA-SM4005G

Group of courses : Yes

	Lectures	Exercides	Laboratory	Project	Seminar
Number of classes held in schools (ZZU)	30		30		
The total number of hours of student wor-	60		90		
kload (CNPS)					
Assesment	exam				
For a group of courses final course mark	X				
Number of ECTS credits	2		3		
including the number of points correspon-			3		
ding to the classes of practical (P)					
including the number of points correspon-	2		2		
ding occupations requiring direct contact					
(BK)					

PREREQUISITES FOR KNOWLEDGE, SKILLS AND OTHER POWERS

Fluency in programming, designing efficient algorithms, estimating computational complexity. Basic knowledge on computer systems architecture, operating systems and communication protocols and electronics.

COURSE OBJECTIVES

- C1 presentation of architecture, limitations, functionalities and vulnerabilities of embedded systems in security area
- C2 developing analysis skills of embedded systems, communication with them and conducting reverse engineering

COURSE LEARNING OUTCOMES

The scope of the student's knowledge:

- W1 Knows design and architecture, programming and limits of embedded systems
- W2 Knows communication standards used in embedded systems e.g. IrDA, UART, JTAG
- W3 Knows basic principles and steps in embedded operating system analysis
- W4 Knows specificity of embedded system vulnerabilities (side channel analysis, hardware-based trojans)
- W5 Knows concept of SDR, programing GNU Radio and signal analysis

The student skills:

- U1 Capability to conduct process of analysis of embedded system
- U2 Capability to establish communication and conduct reverse engineering process of embedded system
- U3 Capability to detect and exploit the vulnerabilities of embedded system
- U4 Capability to design requirements for embedded system following security and privacy requirements
- U5 Capability to program an Arduino microcontroller and communicate with peripherals
- U6 Capability to utilize modules and protocols like IrDA, UART, SDR

The student's social competence:

- K1 can design a system with respect to the expected social behaviour of its users
- **K2** can estimate the risk factor for a functioning system
- **K3** can create solutions oblivious to the end-user
- **K4** can estimate the potential of criminal activities

COURSE CONTENT

	Type of classes - lectures	
Wy1	Wy1 Introduction to the embedded systems - reconnaissance	
Wy2	Hardware and software reverse engineering	6h
Wy3	Trusted Platform Module (TPM and Hardware Security Module (HSM)	2h
Wy4	Embedded systems vulnerabilities	2h
Wy5	Hardware-based trojans	2h
Wy6	Software Defined Radio (SDR)	2h
Wy7	GSM and SIM card	2h
Wy8	Automotive security	2h
Wy9	Physical Unclonable Functions (PUFs)	2h
Wy10	Side-channel attacks and analysis	4h
Wy11	Kleptography	2h
Wy12	Smart cards and modern ID documents	2h
	Sum of hours	30h

Type of classes - laboratory		
Lab1 Assembling toolbox for working with embedded system		4h
Lab2	Establishing communication with embedded systems (e.g. UART)	4h
Lab3 Reverse engineering of selected embedded system		10h
Lab4	Remote analysis of embedded system vulnerabilities	6h
Lab5	Black-box embedded system analysis in a form of Arduino module	6h
	Sum of hours	30h

Applied learning tools

- 1. Traditional lecture
- 2. Multimedia lecture
- 3. Solving tasks and problems
- 4. Creating programming projects
- 5. Consultation
- 6. Self-study students

EVALUATION OF THE EFFECTS OF EDUCATION ACHIEVEMENTS

Value	Number of training effect	Way to evaluate the effect of educa-
		tion
F1	W1-W5, K1-K4	
F2	U1-U6, K1-K4	
P=%*F1+%*F2		

BASIC AND ADDITIONAL READING

- 1. Smart Card Handbook. Wolfgang Rankl, Wolfgang Effing, ISBN: 978-0-470-74367-6
- 2. Theoretical Aspects of Distributed Computing in Sensor Networks. Nikoletseas, Sotiris; Rolim, José, ISBN: 978-3-642-14848-4
- 3. Handbook of Sensor Networks. Yang Xiao, Hui Chen, Frank Haizhon Li, ISBN: 978-981-283-730-1
- 4. Embedded Systems Design with Platform FPGAs: Principles and Practices. Ronald Sass , Andrew G. Schmidt, ISBN:0123743338
- 5. Embedded Systems: A Contemporary Design Tool. James K. Peckol. ISBN: 0471721808
- 6. normative documents

SUPERVISOR OF COURSE

dr inż. Wojciech Wodo

MATRIX OF LEARNING OUTCOMES FOR THE SUBJECT

Systemy Wbudowane w Bezpieczeństwie Komputerowym
WITH LEARNING OUTCOMES IN THE FIELD OF ALGORITHMIC COMPUTER SCIENCE

Subject lear-	EARNING OUTCOMES IN THE FIELD OF Relating the subject effect to the learning	Objectives of		Teaching tool
ning effect	outcomes defined for the field of study	the course**	tent**	number**
W1	K2_W01 K2_W03 K2_W04 K2_W05	C1	Wy1-Wy12	1 2 5 6
	K2_W06 K2_W07 K2_W08 K2_W09			
	K2_W10			
W2	K2_W01 K2_W02 K2_W03 K2_W04	C1	Wy1-Wy12	1256
	K2_W05 K2_W06 K2_W07 K2_W08			
	K2_W09 K2_W10			
W3	K2_W01 K2_W02 K2_W03 K2_W04	C1	Wy1-Wy12	1 2 5 6
	K2_W05 K2_W06 K2_W07 K2_W08			
	K2_W09 K2_W10			
W4	K2_W01 K2_W02 K2_W03 K2_W04	C1	Wy1-Wy12	1 2 5 6
	K2_W05 K2_W06 K2_W07 K2_W08			
	K2_W09 K2_W10			
W5	K2_W01 K2_W02 K2_W03 K2_W04	C1	Wy1-Wy12	1 2 5 6
	K2_W05 K2_W06 K2_W07 K2_W08			
	K2_W09 K2_W10			
U1	K2_U01 K2_U02 K2_U03 K2_U04	C2	Lab1-Lab5	3 4 5 6
	K2_U05 K2_U06 K2_U10 K2_U12			
U2	K2_U01 K2_U02 K2_U03 K2_U04	C2	Lab1-Lab5	3 4 5 6
	K2_U05 K2_U06 K2_U10 K2_U12			
U3	K2_U01 K2_U02 K2_U03 K2_U04	C2	Lab1-Lab5	3 4 5 6
	K2_U05 K2_U06 K2_U09 K2_U10			
	K2_U12			
U4	K2_U01 K2_U02 K2_U03 K2_U04	C2	Lab1-Lab5	3 4 5 6
	K2_U05 K2_U06 K2_U09 K2_U10			
	K2_U12 K2_U13			
U5	K2_U01 K2_U02 K2_U03 K2_U04	C2	Lab1-Lab5	3 4 5 6
	K2_U05 K2_U06 K2_U09 K2_U10			
	K2_U12 K2_U13			2175
U6	K2_U01 K2_U02 K2_U03 K2_U04	C2	Lab1-Lab5	3 4 5 6
	K2_U05 K2_U06 K2_U09 K2_U10			
77.1	K2_U12 K2_U13	G1 G2	W 1 W 10	122156
K1	K2_K02 K2_K03 K2_K05 K2_K06	C1 C2	Wy1-Wy12	123456
17.0	K2_K10 K2_K12	G1 G2	Lab1-Lab5	100456
K2	K2_K02 K2_K07 K2_K08 K2_K09	C1 C2	Wy1-Wy12	1 2 3 4 5 6
1//2	K2_K10 K2_K12	C1 C2	Lab1-Lab5	122456
K3	K2_K02 K2_K03 K2_K05 K2_K06	C1 C2	Wy1-Wy12	1 2 3 4 5 6
17.4	K2_K07 K2_K10 K2_K12	C1 C2	Lab1-Lab5	122456
K4	K2_K03 K2_K05 K2_K07 K2_K09	C1 C2	Wy1-Wy12	1 2 3 4 5 6
	K2_K10 K2_K12		Lab1-Lab5	