Faculty of Information and Communication Technology/Department of Fundamentals of Computer Science

COURSE CARD

Name of the course in polish : Bezpieczeństwo i prywatność w fazie projektowania

Name of the course in english : Security and Privacy by Design Field of study : Algoritmic Computer Science

Specialty (if applicable)

Level and form of studies : II degree, stationary

Type of course : compulsory

Course code : W04INA-SM4007G

Group of courses : Yes

	Lectures	Exercides	Laboratory	Project	Seminar
Number of classes held in schools (ZZU)	30	15	15		
The total number of hours of student wor-	30	30	30		
kload (CNPS)					
Assesment	exam				
For a group of courses final course mark	X				
Number of ECTS credits	1	1	1		
including the number of points correspon-		1	1		
ding to the classes of practical (P)					
including the number of points correspon-	2	1	1		
ding occupations requiring direct contact					
(BK)					

PREREQUISITES FOR KNOWLEDGE, SKILLS AND OTHER POWERS

Passed 'Security I' course.

COURSE OBJECTIVES

- C1 Introduction to the formal analysis of security of information systems. Discussion of security models, types of attacks, adversaries and scenarios. Presentation of theorem proving techniques in the field of security.
- C2 Provide the skills to: a) analyze the correctness of security protocols, b) prove security properties of selected systems for different models of adversaries.
- C3 Design and prototype selected cryptosystems.

COURSE LEARNING OUTCOMES

The scope of the student's knowledge:

- W1 Knows mathematical models of access control and risk analysis
- W2 Knows adversary models and attack scenarios
- W3 Knows techniques for security proofs

The student skills:

- U1 Specify security requirements for given systems in chosen models
- U2 Analyse and evaluate security of given systems in chosen models
- U3 Synthesize new systems from secure building blocks

The student's social competence:

- **K1** Describe and analyse computer security problems in chosen theoretical models.
- **K2** Understand and can argue for the need of theoretical analysis of computer security.

COURSE CONTENT

Type of classes - lectures			
Wy1	Introduction to formal models of computer system security.	1h	
Wy2	Adversary models and attack scenarios.	1h	
Wy3	Formal models of cryptosystems and protocols security.	1h	
Wy4	Proving security via reduction techniques.	1h	
Wy5	Wy5 Secure Identification.		
Wy6	Security digital Signatures.	5h	
Wy7	Authenticated Key Establishment.	5h	
Wy8	Secure schemes on untrusted devices.	5h	
Wy9	Sequence of games with the adversary.	5h	
Wy10	The framework of Universal Composability.	1h	
	Sum of hours	30h	
Type of classes - exercises			
Ćw1	Models.	1h	
Ćw2	Proving security via reduction techniques.	8h	
Ćw3	Proving security via sequence of games.	5h	
Ćw4	Proving security in the UC Framework	1h	
	Sum of hours	15h	
Type of classes - laboratory			
Lab1	Implementing a prototype of a chosen security protocol.	15h	
	Sum of hours	15h	

Applied learning tools

- 1. Traditional lecture
- 2. Solving tasks and problems
- 3. Creating programming projects
- 4. Self-study students

EVALUATION OF THE EFFECTS OF EDUCATION ACHIEVEMENTS

Value	Number of training effect	Way to evaluate the effect of educa-
		tion
F1	W1-W3, K1-K2	
F2	U1-U3, K1-K2	
F3	U1-U3, K1-K2	
P=%*F1+%*F2+%*F3	<u> </u>	

BASIC AND ADDITIONAL READING

- 1. Random Oracles are Practical: A Paradigm for Designing Efficient Protocols, Mihir Bellare and Phillip Rogaway
- 2. The Random Oracle Methodology Revisited, Ran Canetti, Oded Goldreich and Shai Halevi.
- 3. Abstract models of computation in cryptography, Ueli Maurer.
- 4. Universally Composable Security: A New Paradigm for Cryptographic Protocols, R. Canetti.

SUPERVISOR OF COURSE

dr hab. inż. Łukasz Krzywiecki

MATRIX OF LEARNING OUTCOMES FOR THE SUBJECT

Bezpieczeństwo i prywatność w fazie projektowania
WITH LEARNING OUTCOMES IN THE FIELD OF ALGORITHMIC COMPUTER SCIENCE

Subject lear-	Relating the subject effect to the learning	Objectives of	Program con-	Teaching tool
ning effect	outcomes defined for the field of study	the course**	tent**	number**
W1	K2_W01 K2_W02 K2_W04	C1	Wy1-Wy10	1 4
W2	K2_W01 K2_W02 K2_W04	C1	Wy1-Wy10	1 4
W3	K2_W01 K2_W02 K2_W04	C1	Wy1-Wy10	1 4
U1	K2_U03 K2_U04 K2_U06	C2 C3	Ćw1-Ćw4	2 3 4
			Lab1-Lab1	
U2	K2_U01 K2_U02 K2_U03 K2_U04	C2 C3	Ćw1-Ćw4	2 3 4
	K2_U06 K2_U08		Lab1-Lab1	
U3	K2_U02 K2_U03 K2_U04 K2_U06	C2 C3	Ćw1-Ćw4	2 3 4
	K2_U08		Lab1-Lab1	
K1	K2_K03 K2_K05 K2_K07	C1 C2 C3	Wy1-Wy10	1 2 3 4
			Ćw1-Ćw4	
			Lab1-Lab1	
K2	K2_K03 K2_K05 K2_K07	C1 C2 C3	Wy1-Wy10	1 2 3 4
			Ćw1-Ćw4	
			Lab1-Lab1	