Faculty of Information and Communication Technology/Department of Fundamentals of Computer Science

COURSE CARD

Name of the course in polish : **Data Mining**Name of the course in english : **Data Mining**

Field of study : Algoritmic Computer Science

Specialty (if applicable)

Level and form of studies : II degree, stationary

Type of course : optional

Course code : W04INA-SM4102G

Group of courses : Yes

	Lectures	Exercides	Laboratory	Project	Seminar
Number of classes held in schools (ZZU)	30	15	15		
The total number of hours of student wor-	70	55	55		
kload (CNPS)					
Assesment	pass				
For a group of courses final course mark	X				
Number of ECTS credits	2	2	2		
including the number of points correspon-		2	2		
ding to the classes of practical (P)					
including the number of points correspon-	2	1	1		
ding occupations requiring direct contact					
(BK)					

PREREQUISITES FOR KNOWLEDGE, SKILLS AND OTHER POWERS

It is required to pass the following modules: Introduction to the Computer Science and Programming, Data Bases and Information Managements, Logic and Formal Structures, Probabilistic Methods and Statistic.

COURSE OBJECTIVES

- C1 Presentation of the methods of data mining
- C2 Profound understanding of the presented data mining methods
- C3 Ability to use selected algorithms in practice

COURSE LEARNING OUTCOMES

The scope of the student's knowledge:

- W1 Knows the data mining algorithms
- W2 Knows the application of the data mining algorithms

The student skills:

- U1 Can use the data mining algorithms in practice
- **U2** Can use the Apache Spark platform for efficient processing of large datasets

The student's social competence:

K1 Has the ability to cooperate with other experts specialized in data mining algorithms

	COURSE CONTENT	
	Type of classes - lectures	
Wy1	Introduction to the Data Mining	2h
Wy2	Building and evaluating the model	2h
Wy3	Linear regression and related methods	4h
Wy4	Resampling methods	2h
Wy5	Classification algororithms	6h
Wy6	Dimensionality reduction	4h
Wy7	Unsupervised learning	2h
Wy8	Effective implementation of machine learning algorithms	4h
Wy9	Analysis of data streams	4h
	Sum of hours	30h
	Type of classes - exercises	·
Ćw1	Model design and evaluation	2h
Ćw2	Linear regression	2h
Ćw3	Resampling methods	2h
Ćw4	Classification algororithms	5h
Ćw5	Dimensionality reduction	2h
Ćw6	Unsupervised learning	2h
	Sum of hours	15h
	Type of classes - laboratory	<u> </u>
Lab1	Preparing Data for Mining	2h
Lab2	Linear regression and related methods	2h
Lab3	Classification algororithms	4h
Lab4	Clustering algororithms	2h
Lab5	Introduction Apache Spark	5h
	Sum of hours	15h
	Applied learning tools	I

Applied learning tools

- 1. Traditional lecture
- 2. Multimedia lecture
- 3. Solving tasks and problems
- 4. Solving programming tasks
- 5. Creating programming projects
- 6. Self-study students

EVALUATION OF THE EFFECTS OF EDUCATION ACHIEVEMENTS

Value	Number of training effect	Way to evaluate the effect of educa-
		tion
F1	W1-W2, K1-K1	Test
F2	U1-U2, K1-K1	Activity
F3	U1-U2, K1-K1	Implementation and presentation of
		solutions
P=40%*F1+30%*F2+30%*F3		

BASIC AND ADDITIONAL READING

- 1. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, T.Hastie, R. Tibshirani, J.Friedman, 2009
- 2. Mining of Massive Datasets, J.Leskovec, A.Rajaraman, J. Ullman, 2010
- 3. Big Data Analytics with Spark, M. Guller, 2015

SUPERVISOR OF COURSE

dr inż. Jakub Lemiesz

MATRIX OF LEARNING OUTCOMES FOR THE SUBJECT Data Mining WITH LEARNING OUTCOMES IN THE FIELD OF ALGORITHMIC COMPUTER SCIENCE

Subject lear-	Relating the subject effect to the learning	Objectives of	Program con-	Teaching tool
ning effect	outcomes defined for the field of study	the course**	tent**	number**
W1	K2_W01 K2_W02 K2_W04 K2_W07	C1	Wy1-Wy9	1 2 6
W2	K2_W02 K2_W04	C1	Wy1-Wy9	1 2 6
U1	K2_U03 K2_U05 K2_U06 K2_U12	C2 C3	Ćw1-Ćw6	3 4 5 6
			Lab1-Lab5	
U2	K2_U01 K2_U03 K2_U05 K2_U06	C2 C3	Ćw1-Ćw6	3 4 5 6
	K2_U13		Lab1-Lab5	
K1	K2_K02 K2_K03 K2_K04 K2_K07	C1 C2 C3	Wy1-Wy9	1 2 3 4 5 6
	K2_K08 K2_K10		Ćw1-Ćw6	
			Lab1-Lab5	